
( 3  5 i abT, U~3 t abqJ, U3.2 2 - 2 ,  
e2 ~ a%p"ua + -4- abe"u4 + "-~ 20 u~ ~ T o q) u 8 

9 2 , , ,  7 . .,, 23 . , , ,  
-5 -5- a r ulu ~ + 3a~q/" u~u 3 + --f- av~ ulu a + -i-ff ao~ u~ q- 

5 -2 ,,, 23 2 IV ~ 31 a2~iVuiu ~ + ~ ab~iVu~u 2 + "-}- T o q~ Ulu2 .-}- - ~  a r tqu 8 + --~ 

8 ~ v 3 t abcVu~ + t a~q~Viu[ ) . { _ . . .  + + b2@Vu~ + -~-a (p ulu., + -5- -~- 

From this expression and from analysis of the transfer formula (2.7) we see how the Lie- 
Becklund symmetry for the Korteweg-de Vries and Burgers equations transforms into a formal 
symmetry (7.2) for the equation (7.1) that does not satisfy the cutoff condition. 
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QUANTITATIVE CHARACTERISTICS OF THE MAIN CONCEPTS OF LINEAR CONTROL THEORY 

S. K. Godunov UDC 519.6 

In classical linear control theory there is detailed study of the possibility of selec- 
ting a control u(t) which would make it possible to obtain some optimum behavior of trajec- 
tory x(t) described by the system 

~-~x(t) = Ax( t )  + Bu (t). ( 1 )  

Normally it is assumed to be possible to obtain information about the behavior of this 
trajectory only from the vector of observation z(t) = Cx(t). We limit ourselves to consider 
ing a particular, but important in many typical cases, independent of time t, matrix A, B, 
C. There is extensive use (see, e.g., [i-3]) of the concept of controllability for pair 
A, B and the dual concept to each other of stabilizabi!ity for A, B and detectability for 
pair A, C. (If A, B is controllable or stabilizable, then A*, B e is observable and detect- 
able, and conversely). 

We introduce criteria (necessary and sufficient) for controllability and stabilizabil- 
ity. Pair A, B is controllable if the linear shell of columns for the composite matrix 

(B i A B  i A 2B : ... ! AN-1B) ( 2 )  
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has the maximum possible rank N. Here N is the dimension of the space in which the oper- 
ator acts, and N • N is prescribed for the matrix of A. Pair A, B is stabilizable if the 
linear shell of the matrix columns (2) contains all of the invariant root subspaces relating 
to points of the spectrum not strictly lying on the left-hand half-plane. A consequence 
of these criteria is the statement: pair A, B is controllable when, and only when both pairs 
A, B and -A, B are stabilizable. These facts make it possible in discussing the question 
of developing quantitative characteristics for the degree of controllability, stabilizability, 
observability, and detectability to limit the choice only to the problem of stabilizability. 

It is evident that possible controls Bu(t) are in essence only determined by the subspace 
conforming with the linear shell of vectors whose coordinates form column B. A vector for 
the subspace is presented in the form Bu = B(B*B)-ZB*X [X is N-dimensional vector; B(B*B)-IB * 
is orthogonal projector]. If computation of the projector for the prescribed matrix of B 
causes difficulty, which develops in the cases of poor specification of B, then this indi- 
cates that in this case the space for control vectors Bu may change markedly with unsubstan- 
tial changes in B, i.e., it indicates that the space for control vectors will not be deter- 
mined reliably. We limit ourselves to studying stabilizability with firmly prescribed de- 
scription of possible controls when projector B(B*B)-ZB * is assumed to be known or calculable 
without any difficulty. 

In addition, it is assumed that the unit of measurement for time t in the model system, 
for the study of which it is concluded that it is possible to regard the pair A, B as sta- 
bilizable, is selected so that A converts to a matrix of a single norm. In other words, 
instead of the original system (i) we suggest consideration of the system (d/d~)y(T) = 
A0y(~) + Bv(~), in which 

j l =[IAllt, A o = ~ A ,  v(~)=~u(]tA[It), g(~)=x(l]Al]t). 

Clarification of the question of whether the pairs A, B or A 0 = (I/IIAII)A, B are stabilizable 
is reduced (see [I-3]) to checking whether it is possible for each N-dimensional vector 
to determine v(~) so that solution of the Cauchy problem dy(T)/d~ = A0y(~) + Bv(~), y(0) = 
has a finite integral 

(ll g (T)[I ~ + !l By ('0 li ~) d~ - -  lk A ii (ll A II ~ iT x (t) + II B u  <t)II ~) dt < ~ ,  
0 0 

(3) 

If the system is stabilizable, then a single control Bv(~) exists with which this integral 
takes the minimum possible value. In order to construct this equation it is necessary to 
construct a solution for the Hamiltonian system 

El II" 

having a prescribed value y(0) = ~, and to assume that Bv(~) = B(B*B)-ZB*X(~). In the case 
of stabilizability for A, B this solution exists and it is unique if it satisfies the re- 
quirement ily(r)11 + 0, lIX(~)H + 0 with T § ~. The reverse assertion is also correct. From 
existence of a solution for the boundary problem now stated the pair A, B should be stabiliz- 
able. 

As is well known [4], the spectrum of the Hamiltonian matrix 

i.e., a set of roots for the equation det (~ - ~I=N) = 0 placed symmetrically in relation 
to the origin. For each characteristic root Dj it is necessary to find a symmetrical root 
~k = -Bj with the same multiplicity. The possibility of finding a decreasing solution y(T), 
X(~) wi~h any N-dimensional y(0) = ~ means that the number of roots lying strictly in the 
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left-hand half-plane should not be less than N. From the Poincare theorem provided above 
for symmetry of the Hamiltonian matrix spectrum it emerges that for stabilizability absence 
of purely imaginary characteristic roots for ~ is necessary, or what amounts to the same, 
finiteness of parameter ~(~), characterizing the "nature of dichotomy" of the ~ spectrum by 
an imaginary axis. This parameter was introduced in [5, 6], where there was determination 
as a norm of • IIHII of the Hermitian positive-definite matrix H computed in terms of 
by one of the following integrals: 

, y c( )dt H = ~ [3~* + itI2N] - 1  [Yd - -  it/'.zN] -1  dt = (t) 
- - o o  . - -oo  

Here G(t) is a Green matrix, i.e., a limited solution of the matrix differential equation 

d G ( t ) ~ i T d G ( t ) + 6 ( t ) f ~ N  with -- oo < t < -~ oo 
dt 

It was shown in [5-7] that calculation of projectors in invariant space,relating to 
parts of the spectrum in the left- and right-hand complex half-space is reduced to calculat- 
ing G(+0),-G(-0), respectively, which occur with these projectors. The rate of convergence of 
iterations in the computation process is governed by the value of ~(~), and the conv@rgence is 
more rapid, the lower ~. With very large values of this parameter it is natural to abandon 
computation by stating for practical purposes existence of dichotomy for the spectrum of~. 
It is extremely important that the level of stability G(• in relation to small perturba- 
tions of ~ is also estimated in terms of • Finiteness for • is a necessary condition 
for stabilizability of pair A, B. 

Any decreasing trajectory y(~), X(~) with Y ++~, i.e., a solution of system (4), is 
presented with [ > 0 in the form 

)~ (~)] (0)] e ~  G ( +  0) = \~ (o)7 :': 

where X(0) is found for prescribed y(0) = ~ as a solution of the Vector equation 

G(--O) ~(0) = o .  (5 )  

It is noted (see, e.g., [5, 7]) that the process of computing projectors G(+0), -G(-0) may 
be supplemented by the uncomplicated procedure of calculating H and • = IIHII. 

The possibility of unambiguously determining Eq. (5) by expressing l(0) in terms of 

~(0) = K~ ,  ( 6 )  

together with finiteness for parameter • which provides the possibility of computing G(• 
is a necessary and sufficient condition for stabilizability of pair A, B. Norm ~i + JlKII z 
of representation 

which will be assumed to be infinite if h(O) cannot be found unambiguously from (5) even 
with certain T, cannot be considered as a stability characteristic for the solution y(0), 
l(0) in relation to small perturbations of ~. The optimum control minimizing integral (3) 
is given by reverse constraint equations 

~(~) = Ky(~) ,  Bv(~)  = B ( B * B ) - I B * y ( ~ ) .  

Our proposal consists of constructing a value from ~(~),41 + IIKM ~ Whose finiteness pro- 
vides finiteness for these two parameters and, consequently, the feasibility of constructing 
a stabilizing control. We designate this value, a stabilizability characteristic, in terms 
of Stab [A, B]. 
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For example, by assuming that 

1oo 
Stab [A, B]---- max [ ] / ~ - ~ ,  ~ ~ }  

and making use of the fact that • e i, i + lIKil 2 e i, we shall always have Stab [A, B] 
i00 characterizing the "degree of stabilizability" as if it were as a percentage. Other pr o-, 
posals are also possible for the form of the equation expressing Stab [A, B] in terms of 
• and iIKll. 

The necessity of introducing numerical characteristics for the degree of stabilizability, 
controllability, detectability, and observabiiity became clear in the process of analyzing 
the set of equations by means of numerical methods of linear algebra giving a result with 
a guaranteed estimate of accuracy. A review of problems arising in developing these meth- 
ods has been given in [6]. 

The author thanks A. Ya. Bulgarkov and V. M. Gordienko for discussions during which 
the reasoning given in the present work arose. 
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ASYMPTOTICS OF A VELOCITY FIELD AT CONSIDERABLE DISTANCES 

FROM A SELF-PROPELLED BODY 

V. V. Pukhnachev UDC 532.516 

Stationary flow is considered for a viscous incompressible liquid outside a finite body 
in a three-dimensional space. Velocity distribution is prescribed at the surface of the 
body for a liquid with zero overall flow rate over this surface. At infinity the velocity 
vector tends toward a zero constant vector. External mass forces may act on the liquid de- 
creasing quite rapidly with distance from the body~ It is required that the total pulse 
applied to the liquid by the boundary of the body and by mass forces equals zero. The con- 
ditions listed form a boundary problem for Navier-Stokes equations which we call the problem 
of pulse-free flow or the problem of flow around a self-propelled body. Asymptotics are 
constructed for the solution of this problem at considerable distances from the body assuming 
that this solution exists. These asymptotics have marked differences from those for solving 
the classical problem of flow around a towed body [i-3]. 

i. Statement of the Problem. We formulate the problem of pulse-free flow around a 
body by a viscous liquid. Let ~ be a smooth closed surface in R 3, and ~ be the external sur- 
face in relation to the E region. We consider in this region a stationary set of Navier- 
Stokes equations and the continuity 

~ .  ~ Zhurnal Prikladnoi Mekhaniki i T e k ~  F i z ~  
2, pp~ 52-60, March-April, 1989. Original article submitted August 28, 1988. 

0021-8944/89/3002-0215512.50 �9 1989 Plenum Publishing Corporation 215 


